书籍 Data Feminism的封面

Data Feminism

Catherine D'Ignazio

出版社

The MIT Press

出版时间

2020-03-09

ISBN

9780262044004

评分

★★★★★
书籍介绍

A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.

Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics―one that is informed by intersectional feminist thought.

Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.”

Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Catherine D'Ignazio is Assistant Professor of Urban Science and Planning in the Department of Urban Studies and Planning at MIT.

Lauren F. Klein is Associate Professor of English and Quantitative Theory & Methods at Emory University.

用户评论
大数据时代人人转码,除了最直白的经济利益,数据背后带来的权利也很可怕。数据表面象征着客观和事实,但其实只是一种imagined objectivity,无形之中加深了原有不平等权利的结构,如果不是专门停下来question这些根本不会想到吧…读完的感受就是大学真的应该把Data Ethics设为必修课
读下来酣畅淋漓 虽然某些论证自我重合度比较高 但某种程度上称得上women in tech 小组的guideline(我瞎讲的
油管上的Readinggroup也挺好玩的
闲聊到我的专业 manager一脸不可置信说data和gender有啥关联啊……当即想把这本书的pdf云给他……
Data can't speak for themselves 振聋发聩啊
3.5星。
后几章明显力不足,前几章还是有很多好观点。数据是信息,是知识,也是人为的构造,一定会受文化、政治、社会的影响。数据道德的话题应该成为每个人的必修课。
想法很好,但其实更适合想出如何先做起来,想出响亮的呼号,而不是七个略有重叠的章节标题。现在 Ethical AI 乃至泛 CS 的道德和平等话题讲得很多,却还不够多。从 GitHub 拐弯抹角讲到 data attribution 和 crowdsourcing 最后又绕回现实权力结构的散文集,太文质彬彬了,需要再有力一点。从 IEEE Spectrum 的文章看到这本书,书中却没有一个比“女性语音助手的温柔刻板印象”更让人印象深刻的好例子。
个人很喜欢的一本书。上课的时候大部分同学还是蛮悲观的觉得书里提的太空,里面提的project没啥用,不会改变,或者世界不会被feminism改变,拜托,能不能乐观点,因为你只有相信,才能想出办法改变世界,一点点改变,得好几百年的努力。的确,大数据时代,对手更难缠了。难道我们就眼睁睁的放弃挣扎?联系4.12炸组,其他组努力发声,删了发,发了删,网络平台不是只属于capitalism的,不仅仅是方便舆情管控的,最开始互联网的精神就是对抗不公平的,我们普通用户也是一股力量,而不是被玩弄的对象和提供数据(oil)的资源。