本书自第1版出版以来,备受广大读者欢迎。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还对机器学习概念的必要细节进行讨论,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供直观且翔实的解释,是Python机器学习入门必读之作。
本书将带领你进入预测分析的世界,并展示为什么Python会成为数据科学领域首屈一指的计算机语言。如果你想更好地从数据中得到问题的答案,或者想要提升并扩展现有机器学习系统的性能,那么这本基于数据科学实践的书籍非常值得一读。它的内容涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,这些内容能使你快速解决你和你的团队面临的一些重要问题。
不管你是学习数据科学的初学者,还是想进一步拓展对数据科学领域的认知,本书都是一个重要且不可错过的资源,它能帮助你了解如何使用Python解决数据中的关键问题。
本书自第1版出版以来,备受广大读者欢迎。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还对机器学习概念的必要细节进行讨论,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供直观且翔实的解释,是Python机器学习入门必读之作。
本书将带领你进入预测分析的世界,并展示为什么Python会成为数据科学领域首屈一指的计算机语言。如果你想更好地从数据中得到问题的答案,或者想要提升并扩展现有机器学习系统的性能,那么这本基于数据科学实践的书籍非常值得一读。它的内容涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,这些内容能使你快速解决你和你的团队面临的一些重要问题。
不管你是学习数据科学的初学者,还是想进一步拓展对数据科学领域的认知,本书都是一个重要且不可错过的资源,它能帮助你了解如何使用Python解决数据中的关键问题。
本书将机器学习背后的基本理论与应用实践联系起来,通过这种方式让你聚焦于如何正确地提出问题、解决问题。书中讲解了如何使用Python的核心元素以及强大的机器学习库,同时还展示了如何正确使用一系列统计模型。
在本书第1版的基础上,作者对第2版进行了大量更新和扩展,纳入最近的开源技术,包括scikit-learn、Keras和TensorFlow,提供了使用Python构建高效的机器学习与深度学习应用的必要知识与技术。
通过阅读本书,你将学到:
探索并理解数据科学、机器学习与深度学习的主要框架
通过机器学习模型与神经网络对数据提出新的疑问
在机器学习中使用新的Python开源库的强大功能
掌握如何使用TensorFlow库来实现深度神经网络
在可访问的Web应用中嵌入机器学习模型
使用回归分析预测连续目标的结果
使用聚类发现数据中的隐藏模式与结构
使用深度学习技术分析图片
使用情感分析深入研究文本与社交媒体数据