迁移学习作为机器学习和人工智能领域的重要方法,在计算机视觉、自然语言处理、语音识别等领域都得到了广泛的应用。
《迁移学习导论(第2版)》的编写目的是帮助迁移学习及机器学习相关领域的初学者快速入门。全书主要分为“迁移学习基础”“现代迁移学习”和“迁移学习的应用与实践”三大部分,同时配有相关的代码、数据和论文资料,以最大限度地降低初学者的学习和使用门槛。
《迁移学习导论(第2版)》与前一版的主要区别在于新增了对迁移学习前沿关键主题的探讨,以及更多的应用实践内容。
王晋东,微软亚洲研究院研究员,博士毕业于中国科学院计算技术研究所,主要从事迁移学习、机器学习和深度学习方面的研究。研究成果发表在IEEE TKDE、IEEE TNNLS、NeurIPS、CVPR、IJCAI、IMWUT等顶级期刊和会议;获得国家奖学金、中国科学院优秀博士论文奖、IJCAI联邦学习研讨会最佳应用论文奖等。担任国际会议IJCAI 2019的宣传主席,担任TPAMI、TKDE、ICML、NeurIPS、ICLR等的审稿人或程序委员会委员。
陈益强,中国科学院计算技术研究所所务委员、研究员、CCF Fellow,主要研究人机交互与普适计算,联邦学习与迁移学习等。
任北京市移动计算与新型终端重点实验室主任、中科院计算所泛在计算系统研究中心主任;曾入选国家“万人计划”科技创新领军人才、科技部中青年科技创新领军人才、北京市科技新星等