实用机器学习
[美] Henrik Brink
评分 7.3分
本书介绍了实用机器学习的工作流程,主要从实用角度进行了描述,没有数学公式和推导。本书涵盖了数据收集与处理、模型构建、评价和优化、特征的识别、提取和选择技术、高级特征工程、数据可视化技术以及模型的部署和安装,结合3个真实案例全面、详细地介绍了整个机器学习流程。后,还介绍了机器学习流程的扩展和大数据应用。 本书可以作为程序员、数据分析师、统计学家、数据科学家解决实际问题的参考书,也可以作为机器学习爱好