机器学习理论导引
周志华
评分 8.7分
机器学习领域著名学者周志华教授领衔的南京大学LAMDA团队四位教授合著 系统梳理机器学习理论中的七大重要概念或理论工具,并给出若干分析实例 机器学习理论内容浩瀚广博,旨在为机器学习理论研究的读者提供入门导引 本书旨在为有志于机器学习理论学习和研究的读者提供一个入门导引。在预备知识之后,全书各章分别聚焦于:可学性、(假设空间)复杂度、
机器学习
机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者,
集成学习:基础与算法
评分 9.2分
本书是目前国内独本系统性阐述集成学习的著作。 集成学习的思路是通过结合多个学习器来解决问题,它在实践中大获成功——人称“从业者应学应会的大杀器”之一。 化繁为简:将复杂的原理简化为易于理解的表达,通俗易懂; 结构合理:兼具广度与深度。既阐述该领域的重要话题,又详释了重要算法的实现并辅以伪代码,更易上手; <p
南京大学人工智能本科专业教育培养体系
评分 8.5分
本书基于南京大学人工智能学院的主要学术带头人在人工智能人才培养方面的教学改革项目,对人工智能本科人才培养体系进行了梳理,汇集了以南京大学人工智能学院院长周志华教授和书记武港山教授为代表的一批知名教授和专家对创办一流大学人工智能教育的深入思考,是国内外第一部公开出版和发表的人工智能本科专业教育培养体系,对国内正在如火如荼开展的人工智能教育将起到很好的示范和引导作用。本培养方案侧重于人工智能领域
神经网络及其应用
评分 暂无