数学物理大百科全书(套装1-5册)
Francoise.J.P(弗朗索瓦斯)
评分 暂无
数学物理是一个比较新的特殊学科,随着人们的生活与这两门学科的关系越来越密切,一本完善的数学物理百科全书逐渐被越来越多的人所需要。本套书共有五本,*一本书由八篇介绍性的文章组成,旨在数学及物理学专业的本科生和研究生提供一本自学的工具书,省去查阅多部书籍的麻烦。随后的第二至第五本按照字母的顺序编排了一系列的词目,读者可以根据词目快速的找到自己所需要的内容。为了方便读者,本套丛书还提供了主题内容列
微分方程、动力系统与混沌引论:第3版
[美] 莫里斯·W.赫希 (Morris W.Hirsch)
《微分方程、动力系统与混沌引论(第3版)》共17章,由线性系统、非线性系统及其在各个领域中的应用,以及高维非线性系统与混沌等三大部分构成,由浅入深地介绍了微分方程、动力系统与混沌理论的基础知识。 《微分方程、动力系统与混沌引论(第3版)》适合数学系高年级本科生和研究生,以及其他科学和工程领域的研究人员参考阅读。
108个代数问题.来自AwesomeMath全年课程
[美]蒂图.安德雷斯库 [美]阿迪亚.加内什 著
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队精心编写的试题集系列中的一本. 本书从解题的视角来举例说明初等代数中的基本策略和技巧, 书中涵盖了初等代数的众多经典论题, 包括因式分解、二次函数、方程和方程组、Vieta定理、指数和对数、无理式、复数、不等式、连加和连乘、多项式以及三角代换等主题. 为了让读者能够对每章中讨论的策略和技巧进行实践, 除例题
斯米尔诺夫高等数学
[俄罗斯] 斯米尔诺夫
本书适合高等学校数学及相关专业师生使用,也适合数学爱好者参考阅读。 本书共分四章:重积分、曲线积分、反常积分及依赖与参变量的积分,向量分级及场论,微分几何基础,傅里叶级数。理论部分叙述扼要,应用部分叙述详尽。
斯米尔诺夫高等数学.第一卷
[俄罗斯] 斯米尔诺夫 著
本书共分六章,分别为变量与函数关系,极限轮,微商概念及其应用,定积分与不定积分概念,级数及其在函数的近似计算中的应用,多元函数,复数,高等代数初步,函数的积分法。本书语言简洁,内容丰富,讲解细致。 目录 第一章 变量与函数关系 第二章 极限轮,微商概念及其应用 第三章 定积分与不定积分概念
材料科学基础教程
赵品
《材料科学基础教程》主要内容包括材料的结构,晶体缺陷,纯金属的凝固,二元相图,三元相图,固体材料的变形与断裂,回复与再结晶,扩散,固态相变,金属材料,高分子材料,陶瓷材料,复合材料及功能材料的基础知识。《材料科学基础教程》可作为材料科学与工程各专业本科生教材,也可作为研究生、教师和工程技术人员的参考书。
函数论
蒂奇马什
几何变换(Ⅰ)
雅格洛姆
线性代数大题典
徐诚浩
546个早期俄罗斯大学生数学竞赛题
刘培杰数学工作室
尝得春秋,披览不倦。凡大家之手迹,古典之珍品,莫不采摭其华实,探涉其源流,钩纂枢要而编节之,改岁钥而成书。香港凤凰卫视评论员梁文道先生说:我们常把经典和畅销书对立起来,觉得后者虽能红极一时,终究是过眼云烟;而前者面世初时光华内敛,却能长明不息。写书出书,当以铸经典为职志。在罗马的贵族家庭会聘请启蒙师傅来带孩子们背诵、阅读和理解经典。教师们的任务不是兜售自己的知识,而是忠实地教会孩子们读通经典
圆锥曲线习题集 上
陈传麟
我怎样解题
单墫
评分 9.0分
《我怎样解题》共分为五章,分别为:第一章,不等式的证明;第二章,几何;第三章,数论;第四章,组合数学;第五章,数列、函数及其他。适用于数学奥林匹克选手和教练员参考使用,亦可供广大数学爱好者研读。
应用随机过程
田波平
田波平等编著的《应用随机过程》主要介绍了概率论的基础知识,随机过程的基本概念,平稳过程,时间序列分析中的随机线性模型,马尔可夫过程初步,随机过程在排队论中的应用,金融中的非线性随机模型。书中习题选择难易适当。 《应用随机过程》适合高年级理、工科本科生和研究生参考使用。
射影几何趣谈
冯克勤
《射影几何趣谈》,本书深入地探讨和介绍了射影几何这一几何分支的基本内容,并讲述了平面射影几何当中一些有趣的定理和概念。同时通过大量的例子来说明,如何利用射影几何的知识和方法解决平面几何学中的问题。
近代欧氏几何学
约翰逊
评分 9.7分
《近代欧氏几何学》探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。
算术探索
高斯
评分 9.8分
《算术研究》是被誉为“数学王子”的德国大数学家高斯的第一部杰作,该书写于1797年,1801年正式出版,这是一部用拉丁文写成的巨著,是数论的最经典及最具权威性的著作。在随后的200年时间中被翻译成多国文字,如德文、英文、俄文等。这部著作在数学中的重要地位不亚于《圣经》在基督教中的地位,只有欧几里得的《几何原本》堪与之相比,因为高斯有一句名言:“数学是科学的女皇,数论是数学的女皇。”这部著作共
从庞加莱到佩雷尔曼
刘培杰
《从庞加莱到佩雷尔曼》共分3编23章:详细阐述了庞加莱猜想从提出到解决的全过程以及相关的数学专业理论,全书包括令人头疼的世纪难题;最后一位通才——庞加莱;偏微分方程和数学物理;奥斯卡二世奖;法国在数学发展中所起的作用等内容。
几何学教程(立体几何卷)
J·阿达玛
《几何学教程:立体几何卷》是法国著名数学家J.阿达玛的一部名著,译者为我国著名初等几何专家朱德祥教授和其子朱维宗教授。《几何学教程:立体几何卷》除详细而严格地论述了立体几何内容外,还包括了常用曲线、测量概念以及有关高等几何等内容。书中附有大量的习题(共900题),颇有启发性。附录部分主要介绍几何问题的可解性,关于体积的定义,关于任意曲线的长度、任意曲面的面积和体积的概念,关于正多面体的旋转群
数学解题的物理方法
吴振奎
《吴振奎数学经典系列:数学解题中的物理方法》主要内容简介:数学与物理有着不解之缘,人们常用数学方法解答物理问题,然而反过来,用物理方法解答数学问题却未被人们重视,但有时这不仅方便、简洁,而且巧妙、自然。《吴振奎数学经典系列:数学解题中的物理方法》通过大量生动有趣的例子,介绍了中学数学解题中常用的各种物理方法(包括力学、光学、电学及其他物理方法),这不仅可以开阔读者的眼界,启发并丰富其解决数学
几何学教程(平面几何卷)
评分 8.8分
《几何学教程(平面几何卷)》是法国著名数学家J.Hadamard的一部名著,译者为我国著名初等几何专家朱德祥教授和其子朱维宗教授。该书系统地阐述了初等平面几何各部分的主要内容,不仅具有逻辑的严谨性,而且有精确的阐释与论断;书中附有大量的习题(包括杂题、竞赛试题以及所有这些习题的详细解答),可供读者钻研和复习,附录部分主要介绍几何方法的基本原理以及欧几里得公理、切圆问题、面积概念、马尔法提问题
初等数论的知识与问题
500个俄罗斯数学经典老题
刘培杰 编
《500个俄罗斯数学经典老题》收集了500余道俄罗斯数学经典老题。它将抽象的代数、几何知识隐含于通俗、生动、有趣的题目中。《500个俄罗斯数学经典老题》叙述严谨、清晰易懂,可激发学习兴趣,是提高数学水平,锻炼逻辑思维能力的理想用书。《500个俄罗斯数学经典老题》适合于中学生,尤其是数学竞赛选手及数学爱好者。
几何瑰宝
沈文选
评分 9.1分
几何瑰宝:平面几何500名题暨1000条定理(上、下),ISBN:9787560330129,作者:沈文选,杨清桃 编著
500个世界著名数学征解问题
冯贝叶 编译
《500个世界著名数学征解问题》共分5章,涵盖了代数问题、几何问题、高等代数问题、初等数论问题、高等数学问题等内容,每章均包含了数例典型征解问题及解答。该书适合数学奥林匹克选手、教练员使用,也适合于大中院校师生及数学爱好者参考使用。
量子力学
井孝功
本书简明扼要地讲述了量子力学的基本概念和基本原理,特别注重对解决问题能力的培养。为此,每一章后面都附有若干典型习题的讲解和习题,书后给出7套模拟试题,以备读者检验学习效果之用。习题和模拟试题的解答可以在与本书配套使用的《量子力学习题解答》中找到。 在量子力学教学大纲界定的范围内,书中介绍了薛定谔方程的一些新的实用解法,诸如微扰论的递推公式、变分法的迭代公式、透射系数的递推
初等数学复习及研究(平面几何)
梁绍鸿
《初等数学复习及研究:平面几何》原为师范院校开设的《平面几何》课程的试用教材,以平面几何的复习及研究为主要内容。此次为了满足需要而重新排版印刷的。《初等数学复习及研究:平面几何》由哈尔滨工业大学出版社出版。 本书原为师范院校开设的《平面几何》课程的试用教材,以平面几何的复习及研究为主要内容。介绍了中学平面几何摘要、推证通法、证题术、轨迹、作图、多值有向角等基本内容。可作
粤语入门速成班
宋健榕,余小慧主
评分 6.8分
粤语入门速成班,ISBN:9787560324593,作者:宋健榕、余小慧
离散数学引论
王义和
评分 8.6分
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
历届IMO试题集
本书汇集了第1届至第46届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法,且注重了初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用。
高等量子力学习题解答
本书是作者编著的《高等量子力学导论》教材的配套书。书中收集的165道习题大致可分为三大类,第一类是对教材中没有详细推导的公式进行了推导;第二类是对教材中所讲授理论的具体应用;第三类是对教材内容的扩充和推广。