挑战编程技能
Brian P. Hogan
评分 5.0分
新手程序员在具备了理论基础后,面对实际项目时,往往不知道如何解决问题;有经验的程序员在学习了一门新语言后,也会有很多不知道如何使用的特性。针对程序员的这一普遍困惑,资深软件工程师Brian P. Hogan在这本书中总结了57道练习题,教他们如何锤炼技能。这些练习题的难度会逐渐增加,使得编程训练充满挑战又乐趣多多。
Mathematics for Computer Science
Lehman Eric
评分 暂无
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal lo
深度学习
[美] 伊恩·古德费洛
评分 8.3分
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
程序员的算法趣题
[ 日] 增井敏克
评分 7.6分
本书是一本解谜式的趣味算法书,从实际应用出发,通过趣味谜题的解谜过程,引导读者在愉悦中提升思维能力、掌握算法精髓。此外,本书作者在谜题解答上,通过算法的关键原理讲解,从思维细节入手,发掘启发性算法新解,并辅以Ruby、JavaScript等不同语言编写的源代码示例,使读者在算法思维与编程实践的分合之间,切实提高编程能力。 本书适合已经学习过排序、搜索等知名算法,并想要学习更多有趣算法以提升编
深度学习轻松学
冯超
评分 7.1分
《深度学习轻松学:核心算法与视觉实践》介绍了深度学习基本算法和视觉领域的应用实例。书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时,书中还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。除此之外,书中还介绍了深度学习在视觉领域的应用,从原理层面揭示其思路思想,帮助读者在此领域中夯实技术基础。 《深度学习轻松
趣学算法
陈小玉
评分 8.9分
本书内容按照算法策略分为7章。 第1章从算法之美、简单小问题、趣味故事引入算法概念、时间复杂度、空间复杂度的概念和计算方法,以及算法设计的爆炸性增量问题,使读者体验算法的奥妙。 第2~7章介绍经典算法的设计策略、实战演练、算法分析及优化拓展,分别讲解贪心算法、分治算法、动态规划、回溯法、分支限界法、线性规划和网络流。每一种算法都有4~10个实
学习JavaScript数据结构与算法(第2版)
[巴西] Loiane Groner
评分 7.3分
本书首先介绍了JavaScript 语言的基础知识以及ES6 和ES7 中引入的新功能,接下来讨论了数组、栈、队列、链表、集合、字典、散列表、树、图等数据结构,之后探讨了各种排序和搜索算法,包括冒泡排序、选择排序、插入排序、归并排序、快速排序、堆排序、计数排序、桶排序、基数排序、顺序搜索、二分搜索,然后介绍了动态规划和贪心算法等常用的高级算法以及函数式编程,最后还介绍了如何计算算法的复杂度。
图解算法
俞征武
算法是利用电脑解决问题的技巧。本书以轻松的对话方式,采用图解的辅助说明,帮助读者简单且自然地掌握算法的基本概念,并养成主动思考的习惯,达到用算法解决实际问题的目的。全书共分12章,内容包括一切从观察开始、分而治之法、动态规划、贪婪法、修剪与搜索法、树搜索法、问题转换、图算法、计算几何、算法的难题、逼近算法、随机算法等。本书示例丰富,图文并茂,以易于理解的方式阐释算法,帮助程序员在日常项目开发
算法小时代
Serge Abiteboul
评分 6.4分
算法与人工智能是当下最热门的话题之一,技术大发展的同时也引发了令人忧心的技术和社会问题。本书生动介绍了算法的数学原理和性质,描述了算法单纯、本质的功能,分析了算法和人工智能对人类社会现状及未来发展的影响力及其成因。
算法统治世界——智能经济的隐形秩序
徐恪
评分 7.4分
今天,互联网已经彻底改变了经济系统的运行方式,经济增长的决定性要素已经从物质资料的增加转变成为信息的增长。但是,只有信息的快速增长是不够的,这些增长的信息还必须是“有序”的。只有“有序”才能使信息具有价值,能够为人所用,能够指导我们实现商业的新路径。这种包含在信息里的隐形秩序才是今天信息世界的真正价值所在。经济系统的运行确实是纷繁复杂的,但因为算法的存在,这一切变得有律可循,算法也
信息检索
David A.Grossman
评分 6.7分
随着Google、百度等搜索引擎公司的崛起,信息检索已经成为令人振奋的热门研究领域。 本书从发展的角度描述了ad hoc信息检索,讨论了用来实现大规模数据检索的最新算法。详细介绍了推理网络和系统的效率,并且对每种方法都给出了详细可行的实例。此外,本书整合了非结构化和结构化数据的处理技术,是其他教材所不具备的。第2版新增加了IR语言模型和跨语言检索。还讨论了许多当前的热点话
算法竞赛进阶指南
李煜东
评分 9.2分
本书主要根据CCF-NOI信息学奥林匹克竞赛涉及的知识体系进行编写,对计算机程序设计的基本技能——数据结构与算法进行了深入的讲解。 本书面向已经掌握至少一门程序设计语言、对于算法设计有入门性认识的读者,以各类知识点之间的贯穿联系为主线,通过各种模型与例题对各种思维方向进行深入引导,让读者在阅读本书后对算法设计初步具有整体掌控性的理解。能够让读者由浅入深地体会算法,学习算法
营销三大算法
刘学林
评分 8.2分
未来的营销应该是数字化的,即数字营销。以数据为本,用演算做根,数字营销能够演算生活的方方面面。在数字营销领域,市场的整个投入、产出带来什么东西?企业一定要狠清楚地知道,这是做数字营销的本质。数字营销和企业做生意的本质是一样的,目的都是以投入换取产出。 本书由正和岛数字营销部落编写,基于大量企业的案例与数据,提出了营销三大核心算法与一套全局营销系统,帮助企业CEO与营销人员
TensorFlow:实战Google深度学习框架(第2版)
顾思宇
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用。《TensorFlow:实战Google深度学习框架(第2版)》为TensorFlow入门参考书,旨在帮助读者以快速、有效的方式上手TensorFlow和深度学习。书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题。书中包含深度学习的入门
文本上的算法——深入浅出自然语言处理
路彦雄
评分 6.8分
本书结合作者多年学习和从事自然语言处理相关工作的经验,力图用生动形象的方式深入浅出地介绍自然语言处理的理论、方法和技术。本书抛弃掉繁琐的证明,提取出算法的核心,帮助读者尽快地掌握自然语言处理所必备的知识和技能。本书主要分两大部分。第一部分是理论篇,包含前3章内容,主要介绍一些基础的数学知识、优化理论知识和一些机器学习的相关知识。第二部分是应用篇,包含第4章到第8章,分别针对计算性能、文本处理
内容算法
闫泽华
近两年来,伴随着BAT纷纷涌入自媒体平台,自媒体发展可谓迎来爆发。自媒体平台火爆起来是从今日头条异军突起而引发的。它是一款基于数据挖掘的推荐引擎产品,为用户推荐有价值的、个性化的信息,是国内移动互联网领域成长最快的产品服务之一。推荐引擎也将迎来高速发展,针对推荐引擎的优化技术也将会迎来新的机遇。 本书作者从事推荐引擎相关的内容分发相关工作,在书中对内容推荐系统进行了介绍,
算法的陷阱
阿里尔•扎拉奇 (Ariel Ezrachi)
互联网的存在令追求物美价廉的消费者与来自世界各地的商品只有轻点几下鼠标的距离。这诚然是一个伟大的科技进步,但却也是一个发人深思的商业现象。本书中,作者扎拉奇与斯图克将引领我们对由应用程序支持的互联网商务做出更深入的检视。虽然从表面上看来,消费者确是互联网商务兴盛繁荣过程中的获益者,可精妙的算法与数据运算同样也改变了市场竞争的本质,并且这种改变也非总能带来积极意义。 <
算法之美
[美] 布莱恩·克里斯汀
评分 7.5分
我们所有人的生活都受到有限空间和有限时间的限制,因此常常面临一系列难以抉择的问题。在一天或者一生的时光里,哪些事是我们应该做的,哪些是应该放弃的?我们对杂乱无序的容忍底线是什么?新的活动与熟悉并喜爱的活动之间如何平衡,才能取得令人愉快的结果?这些看似是人类特有的难题,其实不然,因为计算机也面临同样的问题,计算机科学家几十年来也一直在努力解决这些问题,而他们找到的解决方案可以给我们很多启发。<
线性代数及其应用(原书第5版)
[美] David C. Lay
评分 9.5分
本书是一本线性代数的现代教材,给出新的线性代数基本介绍和一些有趣应用,目的是帮助学生掌握线性代数的基本概念及应用技巧,为后续课程的学习和工作实践奠定基础。主要内容包括线性方程组、矩阵代数、行列式、向量空间、特征值与特征向量、正交性和小二乘法、对称矩阵和二次型、向量空间的几何学等。此外,本书包含大量的练习题、习题、例题等,便于读者参考。
机器学习实战:基于Scikit-Learn和TensorFlow
Aurélien Géron
评分 8.5分
本书主要分为两个部分。第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法——从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法;第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用TensorFlow搭建和训练深度神经网络,以及卷积神经网络。
百面机器学习
诸葛越
评分 8.6分
人工智能领域正在以超乎人们想象的速度发展,本书赶在人工智能彻底占领世界之前完成编写,实属万幸。 书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。本书从日常工作、生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识 ,而且还包含了成为出众算法工程师的相关技能,更重要的是凝聚了笔者对人工智能领域的一颗热忱之心,旨在培养
人工智能 (第2版)
[美] 史蒂芬·卢奇(Stephen Lucci)
评分 9.1分
作为计算机科学的一个分支,人工智能主要研究、开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统,涉及机器人、语音识别、图像识别、自然语言处理和专家系统等方向。 本书包括引言、基础知识、基于知识的系统、高级专题以及现在和未来五部分内容。第一部分从人工智能的定义讲起,就人工智能的早期历史、思维和智能的内涵、图灵测试、启发法、新千年人工智能的发展进行了简要论
编程之美
《编程之美》小组
本书收集了约60道算法和程序设计的题目,这些题目大部分在微软的笔试、面试中出现过,有的曾被微软员工热烈地讨论过。作者试图从书中各种有趣的问题出发,引导读者发现问题、分析问题、解决问题,寻找更优的解法。本书分为以下几个部分。 • 游戏之乐:从游戏和其他有趣问题出发,化繁为简,分析总结。 • 数字之魅:编程的过程实际上就是和数字及字符打交道的过程
算法霸权
[美] 凯西·奥尼尔
数据科学家凯西•奥尼尔认为,我们应该警惕不断渗透和深入我们生活的数学模型——它们的存在,很有可能威胁到我们的社会结构。 我们生活在一个依赖“算法”的时代,它对我们生活的影响越来越大,我们去哪里上学,我是不是应该贷款买车,我们应该花多少钱来买健康保险,这些都不是由人来决定的,而是由大数据模型来决定的。从理论上来说,这一模型应该让社会更加公平,每一个人的衡量标准都是
面向数据科学家的实用统计学
[美] 彼得·布鲁斯
评分 8.0分
本书解释了数据科学中至关重要的统计学概念,介绍如何将各种统计方法应用于数据科学。作者以易于理解、浏览和参考的方式,引出统计学中与数据科学相关的关键概念;解释各统计学概念在数据科学中的重要性及有用程度,并给出原因。
我的第一本算法书
[日]石田保辉
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。第1章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲 - 赫尔曼密钥交换、k-means 算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量
AI极简经济学
阿杰伊·阿格拉沃尔
◆ 人工智能对你的工作、你的生意意味着什么?读这本书你就能明白。 ——哈尔·瓦里安,谷歌首席经济学家 ◆ AI 商业化领军实验室出品,直击人工智能痛点,从经济学角度解决“何为人工智能,它有什么用,我们该怎么办”,化繁为简,深入浅出地阐释了人工智能对我们工作与生活的影响。 ◆《失控》《必然》 作者凯文·凯利力荐的“天才之作”,哈佛、麻省理工、斯
Kotlin程序员面试算法宝典
孙伟
本书是一本讲解程序员面试笔试算法的书籍。在写法上,除了讲解如何解答算法问题以外,还引入了例子辅以说明,以便读者能够更加容易地理解。 本书将程序员面试笔试过程中的各类算法类真题一网打尽。在题目的广度上,通过各种渠道,搜集了近3年来几乎所有IT企业面试笔试算法高频题目,所选择题目均为企业招聘使用题目;在题目的深度上,本书由浅入深、庖丁解牛式地分析每一个题目,并提炼归纳,同时,
算法数论:格、数域、曲线和密码学
J. P. Buhler 等编
近百年来,由于大量计算的例子,数论学家增进了他们的直觉性。计算机和精心研制的算法逐渐导致出现了算法数论这一专门的领域。这个年轻的学科和计算机科学、密码学以及数学的其他分支有很强的联系。数学思想往往导致更好的算法,这是此学科的魅力之一;而对算法的广泛研究也促使数学新思想的产生和新问题的探索。 《算法数论:格、数域、曲线和密码学》包括由各领域首屈一指的专家对算法数论各个专题所
极简算法史:从数学到机器的故事
[法] 吕克•德•布拉班迪尔
评分 6.2分
数学、逻辑学、计算机科学三大领域实属一家,彼此成就,彼此影响。从古希腊哲学到“无所不能”的计算机,数字、计算、推理这些貌似简单的概念在三千年里融汇、碰撞。如何将逻辑赋予数学意义?如何从简单运算走向复杂智慧?这背后充满了人类智慧的闪光:从柏拉图、莱布尼茨、罗素、香农到图灵都试图从数学公式中证明推理的合理性,缔造完美的思维体系。他们是凭天赋制胜,还是鲁莽地大胆一搏?本书描绘了一场人类探索数学、算