代数学II
B. L. van der Waerden, 范德瓦爾登
评分 8.9分
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:第12至14章讨论线性代数、代数和表示论;第15至17章是理想理论;第18至20章讨论赋值域、代数函数及拓扑代数。 目录 第12章 线性代数 12.1 环上的模 12.2 Euclid环中的模、不变因子 12.3 A
有限群表示论
曹锡华, 时俭益
评分 0.0分
《有限群表示论(第2版)》旨在介绍有限群的表示理论,其中包括群表示论的基本概念与两条主要研究途径的介绍。书的前八章介绍有限群的常表示理论(即在特征数不整除群的阶数的域上的表示,具有完全可约性),着重论述了与群的诱导表示有关的一些经典结果,同时也探讨了域的选取与群表示分解之间的关系。后四章介绍有限群模表示的Brauer理论(即在特征数整除群的阶数的域上的表示,一般不具备完全可约性),该理论通过p模系
代数学引论(第二版)
聂灵沼, 丁石孙
评分 8.1分
《代数学引论(第2版)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。《代数学引论(第2版)》是作者根据多年教学经验,在原有讲义基础上经过修改、补充而成的。书中介绍了代数学的基本知识:第一至第七章给出群、环、模、域四个基本的代数结构及其性质;第八章介绍伽罗瓦理论;第九章是多重线性代数初步。各章后配有相当数量的习题。全书相当于一学年课程的教材。《代数学
抽象代数1
孟道骥
评分 8.3分
《抽象代数1:代数学基础》可作为高等院校数学专业本科生及理工科研究生抽象代数课程的教材,也可供有关科技人员及大专院校师生自学参考。抽象代数(或近世代数)是数学的一个基础学科,也是数学及相关专业的基础课程.南开大学“抽象代数”课程的改革是陈省身生前倡导的南开大学数学专业教学改革的一部分,《代数学基础》是该课程改革后使用的教材。《抽象代数1:代数学基础》是由该教材修订、补充而成,内容包括基本概念、环、
代数数论
冯克勤
评分 8.0分
本书为《中国科学院研究生教学丛书》之一. 代数数论是研究代数数域和代数整数的一门学问.本书的主要内容是经典代数数论.全书共分三部分:第一、二部分为代数理论和解析理论,全面介绍了19世纪代数数论的成就;第三部分为局部域理论,简要介绍了20世纪代数数论的一些内容.附录中给出了本书用到的近世代数的基本知识和进一步学习代数数论的建议.每节末附有习题. 本书的是大学数学系教师和高
高等代数解题方法
许甫华, 张贤科
评分 8.5分
本书是学习高等代数和线性代数的辅导参考书,内容系统深入。在内容的组织上,以清华版《高等代数学》(张贤科、许甫华编著,第2版2004年)各章为基准,内容有:系统的线性代数学,数与多项式理论,近世代数介绍,变换族(群),正交几何与辛几何,Hilbert空间,张量积和外积等,共12章。每章包括:概念和定理介绍;解题方法思路的分析总结;《高等代数学》(第2版)中全部习题的详细分析解答;补充题与解答,书中融
近世代数
熊全淹
评分 6.4分
本书系统地介绍了近世代数的基本理论,全书共八章:前四章对群、环、体、模的基础理论作一般的介绍,后四章则作进一步较深入的论述,每节后附有习题,每章后列有参考文献,书末附有习题解条,供读者参考。 本书叙述由浅入深,推理详尽,便于阅读,可作为高等院校数学系大学生和研究生近世代数课的教材或教学参考书,也可供广大教师和教学工作者参考。
高等代数学(第2版)
张贤科, 许甫华
评分 9.3分
《高等代数学》主要内容为线性代数,包括数与多项式,行列式,线性方程组,矩阵,线性空间,二次型,线性变换,空间分解,矩阵相似,欧空间和酉空间,双线性型;选学内容有正交几何与辛几何,Hilbert空间,张量积与外积等.内容较深厚,便于读者打下优势基础;观点较新,便于读者适应现代数学.还有若干介绍性内容.可作为高校数学、物理、计算机与电子信息等理工专业的教材,或供其他专业参阅。
线性代数
李炯生, 查建国
《线性代数》是作者在中国科学技术大学系多年教学的基础上编写成的。它由多项式、行列式、矩阵、线性空间、线性变换、Jordan标准形、Euclid空间、酉空间和双线性函数等九章组成。在内容的叙述上,力图做到矩阵方法与几何方法相并重。每章都配有丰富的典型例题和充足和习题。 《线性代数》适合作为综合性大学理科数学专业的教材,也可以作为各类大专院校师生的教学参考书,以及关心线性代性与矩阵论的科技工作者的自学