无名图书的logo
无名图书
  • 最近更新
  • 文学
  • 社会文化
  • 历史
  • 经济
  • 理工科
  • 政治
  • 健康
  • 自然科学
  • 计算机
  • 设计
  • 美食旅行
  • 思想
  • 生物
  • 建筑
  • 绘本
  • 天文
  • 数据挖掘实用机器学习技术

    Ian H.Witten, Eibe Frank

    评分 7.9分

    《数据挖掘实用机器学习技术(原书第2版)》介绍数据挖掘的基本理论与实践方法。主要内容包括:各种模型(决策树、关联规则、线性模型、聚类、贝叶斯网以及神经网络)以及在实践中的运用,所存在缺陷的分析。安全地清理数据集、建立以及评估模型的预测质量的方法,并且提供了一个公开的数据挖掘工作平台Weka。Weka系统拥有进行数据挖掘任务的图形用户界面,有助于理解模型,是一个实用并且深受欢迎的工具。 海报:

  • 数据挖掘:实用机器学习工具与技术(原书第3版)

    Ian H.Witten, Eibe Frank

    评分 7.8分

    大数据时代应用机器学习方法解决数据挖掘问题的实用指南。 洞察隐匿于大数据中的结构模式,有效指导数据挖掘实践和商业应用。 weka系统的主要开发者将丰富的研发、商业应用和教学实践的经验和技术融会贯通。 广泛覆盖在数据挖掘实践中采用的算法和机器学习技术,着眼于解决实际问题 避免过分要求理论基础和数学知识,重点在于告诉读者“如何去做”,同时包括许多算法、代码以及具体实例的实现。 将所有的概念都建立在具体

  • 数据挖掘:实用机器学习工具与技术(原书第3版)

    Ian H.Witten, Eibe Frank

    评分 7.8分

    大数据时代应用机器学习方法解决数据挖掘问题的实用指南。 洞察隐匿于大数据中的结构模式,有效指导数据挖掘实践和商业应用。 weka系统的主要开发者将丰富的研发、商业应用和教学实践的经验和技术融会贯通。 广泛覆盖在数据挖掘实践中采用的算法和机器学习技术,着眼于解决实际问题 避免过分要求理论基础和数学知识,重点在于告诉读者“如何去做”,同时包括许多算法、代码以及具体实例的实现。 将所有的概念都建立在具体