从求解多项式方程到阿贝尔不可能性定理
冯承天
评分 8.1分
“阿贝尔不可能性定理”—— 一般五次方程无根式求解,开启了代数史上的一个伟大的新纪元,是人类思想史上的一个重大事件,“她”深刻而优美,但却由于坊间的书籍与文献都是“天书”,而往往使得数学爱好者都望而却步,难以跨越。 本书试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。从“多项式方程的求解与数系的扩张”、“整数的一些基本概念、定理与理论”
从代数基本定理到超越数
评分 9.3分
从一元一次方程到伽罗瓦理论
评分 8.7分
从矢量到张量
评分 暂无
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是“高等数学启蒙小丛书”系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。“既有大小又有方向
从一元一次方程到伽罗瓦理论(第二版)
《从一元一次方程到伽罗瓦理论》从“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法
从空间曲线到高斯-博内定理
《从空间曲线到高斯-博内定理》共分四个部分,十个章节,是论述空间曲线和曲面理论的一本入门读物。 第一部分阐明了本书使用的数学工具:向量的代数运算以及变向量的求导运算。第二部分讨论了曲线的基本概念,引入了弧长参数,也讨论了描述空间曲线变化的曲率与挠率这两个几何量。最后,证明了弗雷内-塞雷公式,并以此证明了曲线的基本定理:曲线的形状是由它的曲率与挠率决定的。第三部分主要讨论的是曲面上的三个基本